awesome-deep-learning-papers
Deep learning papers
A curated list of the most cited deep learning papers from 2012 to 2016, serving as a starting point for understanding deep learning research.
The most cited deep learning papers
26k stars
2k watching
4k forks
Language: TeX
last commit: 10 months ago
Linked from 5 awesome lists
deep-learningdeep-neural-networksmachine-learning
Awesome - Most Cited Deep Learning Papers / Contents / Understanding / Generalization / Transfer | |||
[pdf] | (2015), G. Hinton et al | ||
[pdf] | (2015), A. Nguyen et al | ||
[pdf] | (2014), J. Yosinski et al | ||
[pdf] | (2014), A. Razavian et al | ||
[pdf] | (2014), M. Oquab et al | ||
[pdf] | (2014), M. Zeiler and R. Fergus | ||
[pdf] | (2014), J. Donahue et al | ||
Awesome - Most Cited Deep Learning Papers / Contents / Optimization / Training Techniques | |||
[pdf] | (2015), R. Srivastava et al | ||
[pdf] | (2015), S. Loffe and C. Szegedy | ||
[pdf] | (2015), K. He et al | ||
[pdf] | (2014), N. Srivastava et al | ||
[pdf] | (2014), D. Kingma and J. Ba | ||
[pdf] | (2012), G. Hinton et al | ||
[pdf] | (2012) J. Bergstra and Y. Bengio | ||
Awesome - Most Cited Deep Learning Papers / Contents / Unsupervised / Generative Models | |||
[pdf] | (2016), A. Oord et al | ||
[pdf] | (2016), T. Salimans et al | ||
[pdf] | (2015), A. Radford et al | ||
[pdf] | (2015), K. Gregor et al | ||
[pdf] | (2014), I. Goodfellow et al | ||
[pdf] | (2013), D. Kingma and M. Welling | ||
[pdf] | (2013), Q. Le et al | ||
Awesome - Most Cited Deep Learning Papers / Contents / Convolutional Neural Network Models | |||
[pdf] | (2016), C. Szegedy et al | ||
[pdf] | (2016), C. Szegedy et al | ||
[pdf] | (2016), K. He et al | ||
[pdf] | (2016), K. He et al | ||
[pdf] | (2015), M. Jaderberg et al., | ||
[pdf] | (2015), C. Szegedy et al | ||
[pdf] | (2014), K. Simonyan and A. Zisserman | ||
[pdf] | (2014), K. Chatfield et al | ||
[pdf] | (2013), P. Sermanet et al | ||
[pdf] | (2013), I. Goodfellow et al | ||
[pdf] | (2013), M. Lin et al | ||
[pdf] | (2012), A. Krizhevsky et al | ||
Awesome - Most Cited Deep Learning Papers / Contents / Image: Segmentation / Object Detection | |||
[pdf] | (2016), J. Redmon et al | ||
[pdf] | (2015), J. Long et al | ||
[pdf] | (2015), S. Ren et al | ||
[pdf] | (2015), R. Girshick | ||
[pdf] | (2014), R. Girshick et al | ||
[pdf] | (2014), K. He et al | ||
[pdf] | , L. Chen et al | ||
[pdf] | (2013), C. Farabet et al | ||
Awesome - Most Cited Deep Learning Papers / Contents / Image / Video / Etc | |||
[pdf] | (2016), C. Dong et al | ||
[pdf] | (2015), L. Gatys et al | ||
[pdf] | (2015), A. Karpathy and L. Fei-Fei | ||
[pdf] | (2015), K. Xu et al | ||
[pdf] | (2015), O. Vinyals et al | ||
[pdf] | (2015), J. Donahue et al | ||
[pdf] | (2015), S. Antol et al | ||
[pdf] | (2014), Y. Taigman et al. : | ||
[pdf] | (2014), A. Karpathy et al | ||
[pdf] | (2014), K. Simonyan et al | ||
[pdf] | (2013), S. Ji et al | ||
Awesome - Most Cited Deep Learning Papers / Contents / Natural Language Processing / RNNs | |||
[pdf] | (2016), G. Lample et al | ||
[pdf] | (2016), R. Jozefowicz et al | ||
[pdf] | (2015), K. Hermann et al | ||
[pdf] | (2015), M. Luong et al | ||
[pdf] | (2015), S. Zheng and S. Jayasumana | ||
[pdf] | (2014), J. Weston et al | ||
[pdf] | (2014), A. Graves et al | ||
[pdf] | (2014), D. Bahdanau et al | ||
[pdf] | (2014), I. Sutskever et al | ||
[pdf] | (2014), K. Cho et al | ||
[pdf] | (2014), N. Kalchbrenner et al | ||
[pdf] | (2014), Y. Kim | ||
[pdf] | (2014), J. Pennington et al | ||
[pdf] | (2014), Q. Le and T. Mikolov | ||
[pdf] | (2013), T. Mikolov et al | ||
[pdf] | (2013), T. Mikolov et al | ||
[pdf] | (2013), R. Socher et al | ||
[pdf] | (2013), A. Graves | ||
Awesome - Most Cited Deep Learning Papers / Contents / Speech / Other Domain | |||
[pdf] | (2016), D. Bahdanau et al | ||
[pdf] | (2015), D. Amodei et al | ||
[pdf] | (2013), A. Graves | ||
[pdf] | (2012), G. Hinton et al | ||
[pdf] | (2012) G. Dahl et al | ||
[pdf] | (2012), A. Mohamed et al | ||
Awesome - Most Cited Deep Learning Papers / Contents / Reinforcement Learning / Robotics | |||
[pdf] | (2016), S. Levine et al | ||
[pdf] | (2016), S. Levine et al | ||
[pdf] | (2016), V. Mnih et al | ||
[pdf] | (2016), H. Hasselt et al | ||
[pdf] | (2016), D. Silver et al | ||
[pdf] | (2015), T. Lillicrap et al | ||
[pdf] | (2015), V. Mnih et al | ||
[pdf] | (2015), I. Lenz et al | ||
[pdf] | (2013), V. Mnih et al. ) | ||
Awesome - Most Cited Deep Learning Papers / Contents / More Papers from 2016 | |||
[pdf] | (2016), J. Ba et al | ||
[pdf] | (2016), M. Andrychowicz et al | ||
[pdf] | (2016), Y. Ganin et al | ||
[pdf] | (2016), A. Oord et al | ||
[pdf] | (2016), R. Zhang et al | ||
[pdf] | (2016), J. Zhu et al | ||
[pdf] | (2016), D Ulyanov et al | ||
[pdf] | (2016), W. Liu et al | ||
[pdf] | (2016), F. Iandola et al | ||
[pdf] | (2016), S. Han et al | ||
[pdf] | (2016), M. Courbariaux et al | ||
[pdf] | (2016), C. Xiong et al | ||
[pdf] | (2016), Z. Yang et al | ||
[pdf] | (2016), A. Graves et al | ||
[pdf] | (2016), Y. Wu et al | ||
Awesome - Most Cited Deep Learning Papers / Contents / New papers | |||
[pdf] | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017), Andrew G. Howard et al | ||
[pdf] | Convolutional Sequence to Sequence Learning (2017), Jonas Gehring et al | ||
[pdf] | A Knowledge-Grounded Neural Conversation Model (2017), Marjan Ghazvininejad et al | ||
[pdf] | Accurate, Large Minibatch SGD:Training ImageNet in 1 Hour (2017), Priya Goyal et al | ||
[pdf] | TACOTRON: Towards end-to-end speech synthesis (2017), Y. Wang et al | ||
[pdf] | Deep Photo Style Transfer (2017), F. Luan et al | ||
[pdf] | Evolution Strategies as a Scalable Alternative to Reinforcement Learning (2017), T. Salimans et al | ||
[pdf] | Deformable Convolutional Networks (2017), J. Dai et al | ||
[pdf] | Mask R-CNN (2017), K. He et al | ||
[pdf] | Learning to discover cross-domain relations with generative adversarial networks (2017), T. Kim et al | ||
[pdf] | Deep voice: Real-time neural text-to-speech (2017), S. Arik et al., | ||
[pdf] | PixelNet: Representation of the pixels, by the pixels, and for the pixels (2017), A. Bansal et al | ||
[pdf] | Batch renormalization: Towards reducing minibatch dependence in batch-normalized models (2017), S. Ioffe | ||
[pdf] | Wasserstein GAN (2017), M. Arjovsky et al | ||
[pdf] | Understanding deep learning requires rethinking generalization (2017), C. Zhang et al | ||
[pdf] | Least squares generative adversarial networks (2016), X. Mao et al | ||
Awesome - Most Cited Deep Learning Papers / Contents / Old Papers | |||
[pdf] | An analysis of single-layer networks in unsupervised feature learning (2011), A. Coates et al | ||
[pdf] | Deep sparse rectifier neural networks (2011), X. Glorot et al | ||
[pdf] | Natural language processing (almost) from scratch (2011), R. Collobert et al | ||
[pdf] | Recurrent neural network based language model (2010), T. Mikolov et al | ||
[pdf] | Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion (2010), P. Vincent et al | ||
[pdf] | Learning mid-level features for recognition (2010), Y. Boureau | ||
[pdf] | A practical guide to training restricted boltzmann machines (2010), G. Hinton | ||
[pdf] | Understanding the difficulty of training deep feedforward neural networks (2010), X. Glorot and Y. Bengio | ||
[pdf] | Why does unsupervised pre-training help deep learning (2010), D. Erhan et al | ||
[pdf] | Learning deep architectures for AI (2009), Y. Bengio | ||
[pdf] | Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations (2009), H. Lee et al | ||
[pdf] | Greedy layer-wise training of deep networks (2007), Y. Bengio et al | ||
[pdf] | Reducing the dimensionality of data with neural networks, G. Hinton and R. Salakhutdinov | ||
[pdf] | A fast learning algorithm for deep belief nets (2006), G. Hinton et al | ||
[pdf] | Gradient-based learning applied to document recognition (1998), Y. LeCun et al | ||
[pdf] | Long short-term memory (1997), S. Hochreiter and J. Schmidhuber | ||
Awesome - Most Cited Deep Learning Papers / Contents / HW / SW / Dataset | |||
[pdf] | SQuAD: 100,000+ Questions for Machine Comprehension of Text (2016), Rajpurkar et al | ||
[pdf] | OpenAI gym (2016), G. Brockman et al | ||
[pdf] | TensorFlow: Large-scale machine learning on heterogeneous distributed systems (2016), M. Abadi et al | ||
[pdf] | Torch7: A matlab-like environment for machine learning, R. Collobert et al | ||
[pdf] | MatConvNet: Convolutional neural networks for matlab (2015), A. Vedaldi and K. Lenc | ||
[pdf] | Imagenet large scale visual recognition challenge (2015), O. Russakovsky et al | ||
[pdf] | Caffe: Convolutional architecture for fast feature embedding (2014), Y. Jia et al | ||
Awesome - Most Cited Deep Learning Papers / Contents / Book / Survey / Review | |||
[pdf] | On the Origin of Deep Learning (2017), H. Wang and Bhiksha Raj | ||
[pdf] | Deep Reinforcement Learning: An Overview (2017), Y. Li, | ||
[pdf] | Neural Machine Translation and Sequence-to-sequence Models(2017): A Tutorial, G. Neubig | ||
[html] | Neural Network and Deep Learning (Book, Jan 2017), Michael Nielsen | ||
[html] | Deep learning (Book, 2016), Goodfellow et al | ||
[pdf] | LSTM: A search space odyssey (2016), K. Greff et al | ||
[pdf] | Tutorial on Variational Autoencoders (2016), C. Doersch | ||
[pdf] | Deep learning (2015), Y. LeCun, Y. Bengio and G. Hinton | ||
[pdf] | Deep learning in neural networks: An overview (2015), J. Schmidhuber | ||
[pdf] | Representation learning: A review and new perspectives (2013), Y. Bengio et al | ||
Awesome - Most Cited Deep Learning Papers / Contents / Video Lectures / Tutorials / Blogs | |||
[web] | CS231n, Convolutional Neural Networks for Visual Recognition, Stanford University | ||
[web] | CS224d, Deep Learning for Natural Language Processing, Stanford University | ||
[web] | 15,683 | over 1 year ago | Oxford Deep NLP 2017, Deep Learning for Natural Language Processing, University of Oxford |
[web] | NIPS 2016 Tutorials, Long Beach | ||
[web] | ICML 2016 Tutorials, New York City | ||
[web] | ICLR 2016 Videos, San Juan | ||
[web] | Deep Learning Summer School 2016, Montreal | ||
[web] | Bay Area Deep Learning School 2016, Stanford | ||
[web] | OpenAI | ||
[web] | Distill | ||
[web] | Andrej Karpathy Blog | ||
[Web] | Colah's Blog | ||
[Web] | WildML | ||
[web] | FastML | ||
[web] | TheMorningPaper | ||
Awesome - Most Cited Deep Learning Papers / Contents / Appendix: More than Top 100 | |||
[pdf] | A character-level decoder without explicit segmentation for neural machine translation (2016), J. Chung et al | ||
[html] | Dermatologist-level classification of skin cancer with deep neural networks (2017), A. Esteva et al | ||
[pdf] | Weakly supervised object localization with multi-fold multiple instance learning (2017), R. Gokberk et al | ||
[pdf] | Brain tumor segmentation with deep neural networks (2017), M. Havaei et al | ||
[pdf] | Professor Forcing: A New Algorithm for Training Recurrent Networks (2016), A. Lamb et al | ||
[web] | Adversarially learned inference (2016), V. Dumoulin et al | ||
[pdf] | Understanding convolutional neural networks (2016), J. Koushik | ||
[pdf] | Taking the human out of the loop: A review of bayesian optimization (2016), B. Shahriari et al | ||
[pdf] | Adaptive computation time for recurrent neural networks (2016), A. Graves | ||
[pdf] | Densely connected convolutional networks (2016), G. Huang et al | ||
[pdf] | Continuous deep q-learning with model-based acceleration (2016), S. Gu et al | ||
[pdf] | A thorough examination of the cnn/daily mail reading comprehension task (2016), D. Chen et al | ||
[pdf] | Achieving open vocabulary neural machine translation with hybrid word-character models, M. Luong and C. Manning | ||
[pdf] | Very Deep Convolutional Networks for Natural Language Processing (2016), A. Conneau et al | ||
[pdf] | Bag of tricks for efficient text classification (2016), A. Joulin et al | ||
[pdf] | Efficient piecewise training of deep structured models for semantic segmentation (2016), G. Lin et al | ||
[pdf] | Learning to compose neural networks for question answering (2016), J. Andreas et al | ||
[pdf] | Perceptual losses for real-time style transfer and super-resolution (2016), J. Johnson et al | ||
[pdf] | Reading text in the wild with convolutional neural networks (2016), M. Jaderberg et al | ||
[pdf] | What makes for effective detection proposals? (2016), J. Hosang et al | ||
[pdf] | Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks (2016), S. Bell et al. | ||
[pdf] | Instance-aware semantic segmentation via multi-task network cascades (2016), J. Dai et al | ||
[pdf] | Conditional image generation with pixelcnn decoders (2016), A. van den Oord et al | ||
[pdf] | Deep networks with stochastic depth (2016), G. Huang et al., | ||
[pdf] | Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics (2016), Yee Whye Teh et al | ||
[pdf] | Ask your neurons: A neural-based approach to answering questions about images (2015), M. Malinowski et al | ||
[pdf] | Exploring models and data for image question answering (2015), M. Ren et al | ||
[pdf] | Are you talking to a machine? dataset and methods for multilingual image question (2015), H. Gao et al | ||
[pdf] | Mind's eye: A recurrent visual representation for image caption generation (2015), X. Chen and C. Zitnick | ||
[pdf] | From captions to visual concepts and back (2015), H. Fang et al. | ||
[pdf] | Towards AI-complete question answering: A set of prerequisite toy tasks (2015), J. Weston et al | ||
[pdf] | Ask me anything: Dynamic memory networks for natural language processing (2015), A. Kumar et al | ||
[pdf] | Unsupervised learning of video representations using LSTMs (2015), N. Srivastava et al | ||
[pdf] | Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding (2015), S. Han et al | ||
[pdf] | Improved semantic representations from tree-structured long short-term memory networks (2015), K. Tai et al | ||
[pdf] | Character-aware neural language models (2015), Y. Kim et al | ||
[pdf] | Grammar as a foreign language (2015), O. Vinyals et al | ||
[pdf] | Trust Region Policy Optimization (2015), J. Schulman et al | ||
[pdf] | Beyond short snippents: Deep networks for video classification (2015) | ||
[pdf] | Learning Deconvolution Network for Semantic Segmentation (2015), H. Noh et al | ||
[pdf] | Learning spatiotemporal features with 3d convolutional networks (2015), D. Tran et al | ||
[pdf] | Understanding neural networks through deep visualization (2015), J. Yosinski et al | ||
[pdf] | An Empirical Exploration of Recurrent Network Architectures (2015), R. Jozefowicz et al | ||
[pdf] | Deep generative image models using a laplacian pyramid of adversarial networks (2015), E.Denton et al | ||
[pdf] | Gated Feedback Recurrent Neural Networks (2015), J. Chung et al | ||
[pdf] | Fast and accurate deep network learning by exponential linear units (ELUS) (2015), D. Clevert et al | ||
[pdf] | Pointer networks (2015), O. Vinyals et al | ||
[pdf] | Visualizing and Understanding Recurrent Networks (2015), A. Karpathy et al | ||
[pdf] | Attention-based models for speech recognition (2015), J. Chorowski et al | ||
[pdf] | End-to-end memory networks (2015), S. Sukbaatar et al | ||
[pdf] | Describing videos by exploiting temporal structure (2015), L. Yao et al | ||
[pdf] | A neural conversational model (2015), O. Vinyals and Q. Le | ||
https://www.transacl.org/ojs/index.php/tacl/article/download/570/124 | Improving distributional similarity with lessons learned from word embeddings, O. Levy et al. [[pdf]] ( ) | ||
[pdf] | Transition-Based Dependency Parsing with Stack Long Short-Term Memory (2015), C. Dyer et al | ||
[pdf] | Improved Transition-Based Parsing by Modeling Characters instead of Words with LSTMs (2015), M. Ballesteros et al | ||
[pdf] | Finding function in form: Compositional character models for open vocabulary word representation (2015), W. Ling et al | ||
[pdf] | DeepPose: Human pose estimation via deep neural networks (2014), A. Toshev and C. Szegedy | ||
[pdf] | Learning a Deep Convolutional Network for Image Super-Resolution (2014, C. Dong et al | ||
[pdf] | Recurrent models of visual attention (2014), V. Mnih et al | ||
[pdf] | Empirical evaluation of gated recurrent neural networks on sequence modeling (2014), J. Chung et al | ||
[pdf] | Addressing the rare word problem in neural machine translation (2014), M. Luong et al | ||
[pdf] | Recurrent neural network regularization (2014), W. Zaremba et al | ||
[pdf] | Intriguing properties of neural networks (2014), C. Szegedy et al | ||
[pdf] | Towards end-to-end speech recognition with recurrent neural networks (2014), A. Graves and N. Jaitly | ||
[pdf] | Scalable object detection using deep neural networks (2014), D. Erhan et al | ||
[pdf] | On the importance of initialization and momentum in deep learning (2013), I. Sutskever et al | ||
[pdf] | Regularization of neural networks using dropconnect (2013), L. Wan et al | ||
[pdf] | Learning Hierarchical Features for Scene Labeling (2013), C. Farabet et al | ||
[pdf] | Linguistic Regularities in Continuous Space Word Representations (2013), T. Mikolov et al | ||
[pdf] | Large scale distributed deep networks (2012), J. Dean et al | ||
[pdf] | A Fast and Accurate Dependency Parser using Neural Networks. Chen and Manning |