maxent_string_classifier
String classifier
A JRuby implementation of a maximum entropy classifier for string data
a JRuby maximum entropy classifier for string data, based on the OpenNLP Maxent framework
9 stars
4 watching
5 forks
Language: Ruby
last commit: over 15 years ago
Linked from 2 awesome lists
Related projects:
Repository | Description | Stars |
---|---|---|
mwydmuch/napkinxc | A fast and simple library for multi-class and multi-label classification | 65 |
cardmagic/classifier | A module for text classification using Bayesian and Latent Semantic Indexing algorithms | 661 |
mrmaxent/maxnet | An R implementation of species geographic distribution modeling software | 71 |
ibm/max-resnet-50 | An image classification model using the ResNet-50 architecture, trained on the ImageNet dataset. | 14 |
ibm/max-text-sentiment-classifier | Detects sentiment in short pieces of text using a pre-trained BERT model fine-tuned on the IBM Claims Dataset. | 58 |
zolrath/marky_markov | Generates text based on patterns found in input data | 228 |
robjmal/air-guitar-cs249r | Develops machine learning models to classify guitar gestures and finger chord positions | 6 |
mizor/machine-learning-ruby | A Ruby implementation of common machine learning algorithms and techniques | 13 |
maxim2266/str | A lightweight C library providing string manipulation functions. | 312 |
ibm/max-audio-classifier | Identifies sounds in short audio clips using machine learning and PCA transformation | 154 |
reddavis/naive-bayes | A simple implementation of a Naive Bayes classifier for text classification tasks | 49 |
jekyll/classifier-reborn | A general classifier module with Bayesian and LSI classification capabilities | 554 |
ankane/fasttext-ruby | Efficient text classification and representation learning library for Ruby | 204 |
ibm/max-sports-video-classifier | This project provides a pre-trained video classification model that categorizes sports videos into their respective sports. | 23 |
ibm/max-inception-resnet-v2 | An image classification model using a third-generation deep residual network. | 27 |