Awesome-GEE
EE resources
A curated collection of resources and tools for working with Google Earth Engine
A curated list of Google Earth Engine resources
992 stars
53 watching
199 forks
last commit: 9 months ago
Linked from 2 awesome lists
earth-engineearthenginegeospatialgisgoogle-earth-engineipyleafletjavascriptjupyter-notebookmappingpythonremote-sensing
Awesome Earth Engine / Earth Engine official websites | |||
Official homepage | |||
JavaScript Code Editor | |||
API Documentation | |||
Data Catalog | |||
Timelapse | |||
Earth Engine Apps | |||
Blog | |||
Sign up | |||
Developer Forum | |||
Issue Tracker | |||
Earth Engine API on GitHub | 2,712 | about 1 month ago | |
Google Earth Engine Community Tutorials | 602 | about 1 month ago | |
Google Earth Engine Community Developer Resources | |||
Awesome Earth Engine / Get Started | |||
Sign up | for an Earth Engine account | ||
Get Started with Earth Engine | Read the Earth Engine API documentation - | ||
Client vs. Server | Read another Earth Engine API documentation - . Make sure you have a good understanding of client-side objects vs server-side objects | ||
JavaScript API | Try out the or Python API (e.g., ) | ||
Coding Best Practices | Read | ||
Awesome Earth Engine / Get Help | |||
Earth Engine Developer Forum | |||
GIS Stack Exchange | |||
Report a bug | |||
Dataset requests | |||
Feature requests | |||
Slack channel for geemap and Earth Engine | |||
Awesome Earth Engine / JavaScript API / Playground | |||
JavaScript Code Editor | The official Google Earth Engine JavaScript Code Editor | ||
Awesome Earth Engine / JavaScript API / Repositories | |||
jdbcode/Snazzy-EE-TS-GIF | 42 | over 4 years ago | Apps for creating Landsat time series animations |
fitoprincipe/geetools-code-editor | 306 | over 1 year ago | A set of tools to use in Google Earth Engine JavaScript Code Editor |
Fernerkundung/EarthEngine_scripts | 251 | about 6 years ago | Scripts and snippets for Google Earth Engine |
Google Earth Engine Toolbox (GEET) | 165 | 5 months ago | Library to write small EE apps or big/complex apps with a lot less code |
LandTrendr | Spectral-temporal segmentation algorithm | ||
zecojls/tagee | 72 | 6 months ago | Terrain Analysis in Google Earth Engine (TAGEE) |
ee-palettes | 313 | over 4 years ago | A module for generating color palettes in Earth Engine to be applied to mapped data |
gee-ccdc-tools | A suite of tools designed for continuous land change monitoring in Google Earth Engine | ||
Continuous Degradation Detection (CODED) | A system for monitoring forest degradation and deforestation | ||
LT-GEE | Google Earth Engine implementation of the LandTrendr spectral-temporal segmentation algorithm | ||
spectral | 179 | about 1 month ago | Awesome Spectral Indices for the Google Earth Engine JavaScript API (Code Editor) |
msslib | 17 | over 3 years ago | An Earth Engine JavaScript library for working with Landsat MSS image data |
geeSharp | 42 | almost 2 years ago | Pan-sharpening in the Earth Engine Code Editor |
snazzy | 32 | about 2 months ago | Custom basemap styles in the Earth Engine Code Editor |
ee-polyfill | 1 | over 2 years ago | Modern Javascript methods (ES6+) for the Earth Engine Code Editor |
gee-blend | 35 | almost 3 years ago | Various blending functions for Google Earth Engine |
OpenEarthEngineLibrary | Collection of code goodies for Google Earth Engine (GEE) | ||
Awesome Earth Engine / JavaScript API / Tutorials | |||
Introduction to Google Earth Engine | |||
Introduction to JavaScript for Earth Engine | |||
Introduction to the Earth Engine JavaScript API | |||
Global Forest Change Analysis | |||
Global Surface Water Change Analysis | |||
Beginner's Cookbook | |||
Combining FeatureCollections | |||
Customizing Base Map Styles | |||
Forest Cover and Loss Estimation | |||
Getting Started with Drawing Tools | |||
Identifying Annual First Day of No Snow Cover | |||
Interactive Region Reduction App | |||
Land Surface Temperature in Uganda | |||
Landsat ETM+ to OLI Harmonization | |||
MODIS NDVI Times Series Animation | |||
Non-parametric trend analysis | |||
GEE 开发 on 知乎 by 无形的风 | |||
Calculating Area in Google Earth Engine | |||
Extracting Time Series using Google Earth Engine | |||
Histogram Matching in Google Earth Engine | |||
Getting Git Right on Google Earth Engine | |||
AmericaView - Google Earth Engine (GEE) tutorials | |||
Earth Lab - Introduction to the Google Earth Engine code editor | |||
Coding Club - Intro to the Google Earth Engine | |||
Global Snow Observatory - Google Earth Engine Tutorials | |||
GEARS - Getting started with Google Earth Engine | |||
An Introduction to Remote Sensing for Ecologists Using Google Earth Engine | |||
An introduction to Google Earth Engine | |||
Awesome Earth Engine / JavaScript API / Books | |||
Cloud-Based Remote Sensing with Google Earth Engine | |||
Awesome Earth Engine / Python API / Installation | |||
Earth Engine Python API installation | |||
Awesome Earth Engine / Python API / Packages | |||
earthengine-api | The official Google Earth Engine Python API | ||
geemap | 3,515 | about 1 month ago | A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets |
geeadd | 62 | 4 months ago | Google Earth Engine Batch Asset Manager with Addons |
geeup | 123 | 4 months ago | Simple CLI for Google Earth Engine Uploads |
cartoee | 47 | almost 6 years ago | Publication quality maps using Earth Engine and Cartopy |
gee_tools | 531 | about 1 month ago | A set of tools for working with Google Earth Engine Python API |
landsat-extract-gee | 58 | over 5 years ago | Get Landsat surface reflectance time-series from google earth engine |
Ndvi2Gif | 27 | about 1 year ago | Creating seasonal NDVI compositions GIFs |
eemont | 420 | about 1 month ago | A Python package that extends the Google Earth Engine Python API with pre-processing and processing tools |
hydra-floods | 167 | 7 months ago | An open source Python application for downloading, processing, and delivering surface water maps derived from remote sensing data |
RadGEEToolbox | 3 | 9 months ago | Python package simplifying large-scale operations using Google Earth Engine (GEE) Python API for users who utilize Landsat (5, 8, & 9) and Sentinel 1 & 2 data |
restee | 38 | 7 months ago | A package that aims to make plugging Earth Engine computations into downstream Python processing easier |
wxee | 207 | about 1 year ago | A Python interface between Earth Engine and xarray for processing weather and climate data |
taskee | 12 | 12 months ago | Monitor your Earth Engine tasks and get notifications on your phone or computer |
geedim | 83 | about 1 month ago | Search, composite, and download Earth Engine imagery, without size limits |
Awesome Earth Engine / Python API / Repositories | |||
earthengine-py-notebooks | 1,382 | almost 4 years ago | A collection of 360+ Jupyter notebook examples for using Google Earth Engine with interactive mapping |
earthengine-py-examples | 135 | over 4 years ago | A collection of 300+ examples for using Earth Engine and the geemap Python package |
ee-tensorflow-notebooks | 76 | almost 5 years ago | Repository to place example notebooks for Deep Learning applications with TensorFlow and Earth Engine |
CoastSat | 701 | about 2 months ago | Global shoreline mapping tool from satellite imagery |
Google-Earth-Engine-Python-Examples | 315 | 9 months ago | |
csaybar/EEwPython | 279 | 7 months ago | |
Awesome Earth Engine / Python API / Tutorials | |||
geemap and Earth Engine Python API tutorials | 3,515 | about 1 month ago | |
A Quick Introduction to Google Earth Engine | |||
Google Earth Engine (GEE) and Image Analysis | |||
Earth Engine Python API Colab Setup | |||
Earth Engine TensorFlow demonstration notebook | |||
Earth Lab - Calculating the area of polygons in Google Earth Engine | |||
Semantic Segmentation of GEE High Resolution Imagery | |||
Awesome Earth Engine / Python API / Books | |||
Geospatial Data Science with Earth Engine and Geemap | |||
Awesome Earth Engine / R / Packages | |||
rgee | 694 | about 1 month ago | An R package for using Google Earth Engine |
earthEngineGrabR | 53 | over 4 years ago | Simplify the acquisition of remote sensing data |
Awesome Earth Engine / R / Repositories | |||
rgee-examples | A collection of 250+ examples for using Google Earth Engine with R | ||
Awesome Earth Engine / R / Tutorials | |||
rgee tutorial #1: Creating global land surface temperature maps | |||
rgee tutorial #2: Satellite image processing | |||
Awesome Earth Engine / QGIS / Packages | |||
Website | Earth Engine QGIS Plugin ( , ) - Integrates Google Earth Engine and QGIS using Python API | ||
Awesome Earth Engine / QGIS / Repositories | |||
qgis-earthengine-examples | 904 | about 3 years ago | A collection of 300+ Python examples for using Google Earth Engine in QGIS |
Awesome Earth Engine / QGIS / Tutorials | |||
Creating Maps with Google Earth Engine | |||
Awesome Earth Engine / GitHub Developers / Community | |||
earthengine-api | 2,712 | about 1 month ago | |
Google Earth Engine Community | |||
Google Earth Engine Community Tutorials | 602 | about 1 month ago | |
Awesome Earth Engine / GitHub Developers / Individuals | |||
Cesar Aybar | |||
Justin Braaten | |||
Tirthankar "TC" Chakraborty | |||
Diego Garcia Diaz | |||
Gennadii Donchyts | |||
Ujaval Gandhi | |||
Philipp Gärtner | |||
Eduardo Lacerda | |||
Kel Markert | |||
Mort Canty | |||
Keiko Nomura | |||
Rodrigo E. Principe | |||
Mark Radwin | |||
Samapriya Roy | |||
Sabrina Szeto | |||
Qiusheng Wu | |||
Awesome Earth Engine / Twitter / Bots | |||
Earth Engine Bot | |||
Geospatial Python | |||
Synthetic Aperture Random | |||
Awesome Earth Engine / Twitter / Google affiliated | |||
Google Earth | |||
Google Earth Outreach | |||
Tyler Erickson | |||
Rebecca Moore | |||
Kurt Schwehr | |||
Awesome Earth Engine / Twitter / Individuals | |||
Cesar Aybar | |||
Justin Braaten | |||
Tirthankar "TC" Chakraborty | |||
Morgan Crowley | |||
Diego Garcia Diaz | |||
Gennadii Donchyts | |||
Ujaval Gandhi | |||
Philipp Gärtner | |||
Belize GEO | |||
Mort Canty | |||
Kel Markert | |||
Keiko Nomura | |||
Samapriya Roy | |||
Sabrina Szeto | |||
Dave Thau | |||
Qiusheng Wu | |||
Iain H Woodhouse | |||
Awesome Earth Engine / Apps | |||
Earth Engine Apps | |||
An image gallery of almost all publicly available Google Earth Engine Apps | Philipp Gärtner | ||
A searchable list of all publicly available Google Earth Engine Apps | |||
Earth Engine App Filter | by Philipp Gärtner | ||
Awesome Earth Engine / Free Courses | |||
End-to-End Google Earth Engine | by | ||
Spatial Data Management with Earth Engine | by | ||
Professor Iain Woodhouse’s guide to GEE resources and courses | |||
Awesome Earth Engine / Presentations / geemap | |||
Using the geemap Python package for interactive mapping with Earth Engine | Earth Engine Virtual Meetup on May 8, 2020 | ||
Cloud computing and interactive mapping with Earth Engine and open-source GIS | GeoInsider webinar on May 28, 2020 | ||
Mapping Wetland Inundation Dynamics using Google Earth Engine | Machine learning and data fusion workshop on June 10, 2020 | ||
Awesome Earth Engine / Presentations / General | |||
SERVIR Global - Introduction to Google Earth Engine | |||
Awesome Earth Engine / Videos / Google | |||
Geo For Good 2019 on YouTube | |||
Earth Engine Video Tutorials | |||
Awesome Earth Engine / Videos / General | |||
video | Getting Started with Earth Engine with Sabrina Szeto ( - ) | ||
video | Earth Engine Virtual Meetup on May 6, 2020 ( ) | ||
Awesome Earth Engine / Videos / geemap | |||
geemap tutorials on YouTube | |||
geemap tutorials on 哔哩哔哩 | |||
geemap tutorials on 西瓜视频 | |||
video | GeoInsider webinar - Cloud computing and interactive mapping with Earth Engine and open-source GIS ( - ) | ||
video | GeoInsider webinar 2 - Using Google Earth Engine for large-scale geospatial analysis: A case study of automated surface water mapping ( | ) | ||
Awesome Earth Engine / Projects | |||
Google Earth Engine | on Research Gate | ||
Awesome Earth Engine / Websites | |||
Global Surface Water Explorer | |||
Global Forest Cover Change | |||
Global Forest Watch | |||
Map Of Life | |||
Climate Engine | |||
Surface Water Mapping Tool | |||
Surface water changes (1985-2016) | |||
Decision Support Tools | |||
Earth Map | |||
CoastSat shoreline change database | |||
Awesome Earth Engine / Datasets / Community Datasets | |||
awesome-gee-community-datasets | 805 | about 1 month ago | |
Awesome Earth Engine / Datasets / Landsat | |||
Landsat 9 Surface Reflectance | |||
Landsat 9 TOA Reflectance | |||
Landsat 8 Surface Reflectance | |||
Landsat 8 TOA Reflectance | |||
Awesome Earth Engine / Datasets / Sentinel | |||
Sentinel-1 SAR GRD | |||
Sentinel-2 MSI Surface Reflectance | |||
Sentinel-2 MSI TOA Reflectance | |||
Awesome Earth Engine / Datasets / NAIP | |||
NAIP: National Agriculture Imagery Program | |||
Awesome Earth Engine / Datasets / Land Cover | |||
NLCD: USGS National Land Cover Database | |||
Awesome Earth Engine / Papers / Highlights | |||
https://doi.org/10.21105/joss.02272 | Aybar, C., Wu, Q., Bautista, L., Yali, R., & Barja, A. (2020). rgee: An R package for interacting with Google Earth Engine. . 5(51), 2272 | ||
https://doi.org/10.1016/j.rse.2017.06.031 | Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. . 202, 18–27 | ||
https://doi.org/10.21105/joss.02305 | Wu, Q. (2020). geemap: A Python package for interactive mapping with Google Earth Engine. . 5(51), 2305 | ||
Awesome Earth Engine / Papers / Journal Special Issues | |||
Call for Papers | , Remote Sensing for Environmental and Societal Changes Using Google Earth Engine ( ) | ||
Call for Papers | , Cloud Computing in Google Earth Engine for Remote Sensing ( ) | ||
Call for Papers | , Google Earth Engine and Cloud Computing Platforms: Methods and Applications in Big Geo Data Science ( , ) | ||
Call for Papers | , Google Earth Engine Applications ( , ) | ||
Call for Papers | , Remote Sensing of Land Change Science with Google Earth Engine ( , ) | ||
Awesome Earth Engine / Papers / Review | |||
https://doi.org/10.1109/JSTARS.2020.3021052 | Amani, M., Ghorbanian, A., Ahmadi, A., Kakooei, M., ..., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. | ||
https://doi.org/10.1002/wat2.1496 | Boothroyd, R., Williams, R., Hoey, T., Barrett, B., & Prasojo, O. (2020). Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. | ||
https://doi.org/10.3390/rs10101509 | Kumar, L., Mutanga, O., 2018. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. 10, 1509 | ||
https://doi.org/10.1016/j.isprsjprs.2020.04.001 | Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B., 2020. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. 164, 152–170 | ||
https://doi.org/10.1016/j.rse.2020.112002 | Wang, L., Diao, C., Xian, G., Yin, D., Lu, Y., Zou, S., & Erickson, T. A. (2020). A summary of the special issue on remote sensing of land change science with Google earth engine. | ||
https://doi.org/10.3390/rs14143253 | Yang, L., Driscol, J., Sarigai, S., Wu, Q., Chen, H., & Lippitt, C. D. (2022). Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. , 14(14), 3253 | ||
https://doi.org/10.3390/s22062416 | Yang, L., Driscol, J., Sarigai, S., Wu, Q., Lippitt, C. D., & Morgan, M. (2022). Towards Synoptic Water Monitoring Systems: A Review of AI Methods for Automating Water Body Detection and Water Quality Monitoring Using Remote Sensing. , 22(6), 2416 | ||
Awesome Earth Engine / Papers / Hydrology | |||
https://doi.org/10.1038/nclimate3111 | Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., van de Giesen, N., 2016. Earth’s surface water change over the past 30 years. . 6, 810 | ||
https://doi.org/10.1038/nature20584 | Pekel, J.-F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global surface water and its long-term changes. 540, 418–422 | ||
https://doi.org/10.31711/ugap.v51i.134 | Radwin, M., & Bowen, B. (2024). Evolution of Great Salt Lake’s Exposed Lakebed (1984-2023): Variations in Sediment Composition, Water, and Vegetation from Landsat OLI and Sentinel MSI Satellite Reflectance Data. Geosites, 51, 1–23 | ||
https://doi.org/10.1016/j.rse.2019.04.015 | Wu, Q., Lane, C.R., Li, X., Zhao, K., Zhou, Y., Clinton, N., DeVries, B., Golden, H.E., Lang, M.W., 2019. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. . 228, 1–13 | ||
https://doi.org/10.1038/nature21100 | Yamazaki, D., Trigg, M.A., 2016. Hydrology: The dynamics of Earth’s surface water. | ||
Awesome Earth Engine / Papers / Urban | |||
https://doi.org/10.5194/essd-12-357-2020 | Li, X., Zhou, Y., Zhu, Z., Cao, W., 2020. A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States. 12, 357 | ||
https://doi.org/10.1016/j.rse.2018.02.055 | Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., Pei, F., Wang, S., 2018. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. . 209, 227–239 | ||
https://doi.org/10.1038/s41893-020-0521-x | Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., Lin, P., Gong, K., Ziegler, A.D., Chen, A., Gong, P., Chen, J., Hu, G., Chen, Y., Wang, S., Wu, Q., Huang, K., Estes, L., Zeng, Z., 2020. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. 1–7 | ||
https://doi.org/10.1016/j.jag.2014.09.005 | Patel, N.N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F.R., Tatem, A.J., Trianni, G., 2015. Multitemporal settlement and population mapping from Landsat using Google Earth Engine. . 35, 199–208 | ||
https://doi.org/10.1038/nature25181 | Weiss, D.J., Nelson, A., Gibson, H.S., Temperley, W., Peedell, S., Lieber, A., Hancher, M., Poyart, E., Belchior, S., Fullman, N., Mappin, B., Dalrymple, U., Rozier, J., Lucas, T.C.D., Howes, R.E., Tusting, L.S., Kang, S.Y., Cameron, E., Bisanzio, D., Battle, K.E., Bhatt, S., Gething, P.W., 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015. 553, 333–336 | ||
Awesome Earth Engine / Papers / Vegetation | |||
https://doi.org/10.5194/essd-11-881-2019 | Li, X., Zhou, Y., Meng, L., Asrar, G.R., Lu, C., Wu, Q., 2019. A dataset of 30 m annual vegetation phenology indicators (1985–2015) in urban areas of the conterminous United States. . 11(2), 881-894 | ||
https://doi.org/10.3390/rs9080863 | Robinson, N.P., Allred, B.W., Jones, M.O., Moreno, A., Kimball, J.S., Naugle, D.E., Erickson, T.A., Richardson, A.D., 2017. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. 9, 863 | ||
https://doi.org/10.1016/j.rse.2019.111317 | Xie, Z., Phinn, S.R., Game, E.T., Pannell, D.J., Hobbs, R.J., Briggs, P.R., McDonald-Madden, E., 2019. Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation. . 232, 111317 | ||
Awesome Earth Engine / Papers / Agriculture | |||
https://doi.org/10.1016/j.rse.2016.02.016 | Dong, J., Xiao, X., Menarguez, M.A., Zhang, G., Qin, Y., Thau, D., Biradar, C., Moore, B., 3rd, 2016. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. . 185, 142–154 | ||
https://doi.org/10.1016/j.isprsjprs.2017.01.019 | Xiong, J., Thenkabail, P.S., Gumma, M.K., Teluguntla, P., Poehnelt, J., Congalton, R.G., Yadav, K., Thau, D., 2017. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. . 126, 225–244 | ||
https://doi.org/10.3390/rs9101065 | Xiong, J., Thenkabail, P.S., Tilton, J.C., Gumma, M.K., Teluguntla, P., Oliphant, A., Congalton, R.G., Yadav, K., Gorelick, N., 2017. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine. 9, 1065 | ||
Awesome Earth Engine / Papers / Wetlands | |||
https://doi.org/10.3390/rs11070842 | Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mohammad Javad Mirzadeh, S., White, L., Banks, S., Montgomery, J., Hopkinson, C., 2019. Canadian Wetland Inventory using Google Earth Engine: The First Map and Preliminary Results. 11, 842 | ||
https://doi.org/10.1016/j.isprsjprs.2017.07.011 | Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., Qin, Y., Zhao, B., Wu, Z., Sun, R., Lan, G., Xie, G., Clinton, N., Giri, C., 2017. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. . 131, 104–120 | ||
https://doi.org/10.3390/rs9121315 | Hird, J.N., DeLancey, E.R., McDermid, G.J., Kariyeva, J., 2017. Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping. 9, 1315 | ||
https://doi.org/10.1080/07038992.2020.1802584 | Mahdianpari, M., Brisco, B., Granger, J. E., Mohammadimanesh, F., Salehi, B., Banks, S., ... & Weng, Q. (2020). The Second Generation Canadian Wetland Inventory Map at 10 Meters Resolution Using Google Earth Engine. , 46(3), 360-375 | ||
https://doi.org/10.3390/rs11010043 | Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., Gill, E., 2018. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. 11, 43 | ||
https://doi.org/10.31711/ugap.v51i.134 | Radwin, M., & Bowen, B. (2024). Evolution of Great Salt Lake’s Exposed Lakebed (1984-2023): Variations in Sediment Composition, Water, and Vegetation from Landsat OLI and Sentinel MSI Satellite Reflectance Data. Geosites, 51, 1–23 | ||
https://doi.org/10.1016/j.rse.2018.11.030 | Wang, X., Xiao, X., Zou, Z., Chen, B., Ma, J., Dong, J., Doughty, R.B., Zhong, Q., Qin, Y., Dai, S., Li, X., Zhao, B., Li, B., 2020. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. . 238, 110987 | ||
https://doi.org/10.1016/j.rse.2019.04.015 | Wu, Q., Lane, C.R., Li, X., Zhao, K., Zhou, Y., Clinton, N., DeVries, B., Golden, H.E., Lang, M.W., 2019. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. . 228, 1–13 | ||
https://doi.org/10.3390/rs12223758 | Yancho, J. M. M., Jones, T. G., Gandhi, S. R., Ferster, C., Lin, A., & Glass, L. (2020). The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). , 12(22), 3758 | ||
Awesome Earth Engine / Papers / Land Cover | |||
https://doi.org/10.1038/s41597-022-01307-4 | Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., ... & Tait, A. M. (2022). Dynamic World, Near real-time global 10 m land use land cover mapping. , 9(1), 1-17 | ||
https://doi.org/10.3390/rs11030288 | Carrasco, L., O’Neil, A.W., Morton, R.D., Rowland, C.S., 2019. Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine. 11, 288 | ||
https://doi.org/10.1126/science.1244693 | Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century forest cover change. 342, 850–853 | ||
https://doi.org/10.1016/j.rse.2017.02.021 | Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., Gong, P., Yang, J., Bai, Y., Zheng, Y., Zhu, Z., 2017. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. . 202, 166–176 | ||
https://doi.org/10.5194/essd-12-1217-2020 | Liu, H., Gong, P., Wang, J., Clinton, N., Bai, Y., Liang, S., 2020. Annual Dynamics of Global Land Cover and its Long-term Changes from 1982 to 2015. . 12, 1217–1243 | ||
https://doi.org/10.31711/ugap.v51i.134 | Radwin, M., & Bowen, B. (2024). Evolution of Great Salt Lake’s Exposed Lakebed (1984-2023): Variations in Sediment Composition, Water, and Vegetation from Landsat OLI and Sentinel MSI Satellite Reflectance Data. Geosites, 51, 1–23 | ||
Awesome Earth Engine / Papers / Disaster Management | |||
https://doi.org/10.1016/j.rse.2020.111664 | DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J.W., Lang, M.W., 2020. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. . 240, 111664 | ||
https://doi.org/10.3390/rs10081283 | Liu, C.-C., Shieh, M.-C., Ke, M.-S., Wang, K.-H., 2018. Flood Prevention and Emergency Response System Powered by Google Earth Engine. 10, 1283 | ||
https://doi.org/10.1038/s41586-021-03695-w | Tellman, B., Sullivan, J.A., Kuhn, C., Kettner, A.J., Doyle, C.S., Brakenridge, G.R., Erickson, T.A., Slayback, D.A., 2021. Satellite imaging reveals increased proportion of population exposed to floods. 596, 80–86 | ||
Awesome Earth Engine / Papers / Coastal | |||
https://doi.org/10.1016/j.envsoft.2019.104528 | Vos, K., Splinter, K.D., Harley, M.D., Simmons, J.A., Turner, I.L., 2019. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery . 122, 104528 |