Loess.jl

Loess algorithm

An implementation of local regression and smoothing using a kd-tree based approximation

Local regression, so smooooth!

GitHub

104 stars
9 watching
34 forks
Language: Julia
last commit: 7 days ago
Linked from 2 awesome lists


Backlinks from these awesome lists:

Related projects:

Repository Description Stars
juliastats/multivariatestats.jl A comprehensive Julia package for multivariate statistical analysis and data reduction techniques. 379
juliastats/distributions.jl A package for probability distributions and associated functions in Julia 1,114
juliastats/glm.jl A Julia package for building and analyzing regression models using generalized linear models 595
juliastats/clustering.jl A collection of clustering algorithms and evaluation metrics for data analysis 355
juliastats/glmnet.jl A Julia wrapper around the glmnet R package for fitting Lasso/ElasticNet GLM models using cyclic coordinate descent. 96
juliastats/kerneldensity.jl A Julia package for estimating kernel density from univariate and bivariate data using fast Fourier transforms and least-squares cross validation. 181
juliaearth/geostatsimages.jl Provides preprocessed data for geostatistical simulations in Julia. 15
juliaearth/geostats.jl An extensible framework for geospatial data science and geostatistical modeling 524
alyst/spatialindexing.jl Efficient in-memory indexing of spatial data 32
juliageometry/regiontrees.jl A Julia package that provides a lightweight framework for defining and working with N-dimensional spatial data structures 111
juliastats/distances.jl A Julia package for evaluating distances between vectors and matrices 433
juliageometry/voronoidelaunay.jl A fast and robust algorithm for creating 2D tessellations of generic points 124
juliastats/timeseries.jl A lightweight framework for working with time series data in Julia 355
juliastats/pgm.jl A Julia framework for building and analyzing probabilistic graphical models. 52
juliastats/hypothesistests.jl A package of statistical tests implemented in Julia to make hypothesis testing accessible and easy to use. 299