naturtag
Photo tagger
A tool for tagging nature photos with metadata from biodiversity platforms
Tag your nature photos with iNat taxonomy and observation metadata
37 stars
3 watching
4 forks
Language: Python
last commit: 20 days ago
Linked from 1 awesome list
biodiversitybiodiversity-dataclidarwin-coredwcexifhierarchical-keywordsinaturalistiptcphotographytaxonomyxmp
Related projects:
Repository | Description | Stars |
---|---|---|
pyinat/pyinaturalist | A Python client providing easy access to iNaturalist's biodiversity data API | 134 |
yannforget/pylandsat | A tool for accessing and preprocessing Landsat imagery from the Google Cloud dataset | 65 |
4uiiurz1/pytorch-nested-unet | An implementation of a deep learning model for image segmentation using PyTorch | 851 |
wildeyeconservation/traptagger | An application that uses AI to process camera-trap images and classify wildlife species | 30 |
neon-jungle/wagtail-metadata | A tool to help with metadata for search engines and social media platforms. | 116 |
d5555/tageditor | An annotation tool for natural language processing with spaCy integration. | 186 |
penguinparadigm/annotot | An API for persisting annotations in digital media | 10 |
gbif/ipt | A tool for publishing and sharing biodiversity data through a global network of datasets | 128 |
felixgwu/img_classification_pk_pytorch | A PyTorch project for comparing image classification models and facilitating quick experiment setup | 365 |
hhatto/nude.py | Detects human nudity in images using computer vision techniques. | 928 |
pyg-team/pytorch-frame | A deep learning framework for handling heterogeneous tabular data with diverse column types | 543 |
iamwangyunkai/carla_py | Generates data for CARLA's visual navigation system using raw camera images and instructions. | 8 |
jbferet/biodivmapr | Maps biodiversity from remote-sensed images using statistical methods | 47 |
gbif/pygbif | A Python client for accessing biodiversity data from the GBIF API. | 111 |
media-smart/vedaseg | A PyTorch-based toolbox for building and training semantic segmentation models | 410 |