datacube-core

Data Analysis Platform

A Python-based platform for integrated gridded data analysis from decades of Earth observation satellite data

Open Data Cube analyses continental scale Earth Observation data through time

GitHub

518 stars
52 watching
178 forks
Language: Python
last commit: about 1 month ago
Linked from 1 awesome list

gdalgishacktoberfestnetcdfnumpypythonrasterremote-sensingscientific-computing

Backlinks from these awesome lists:

Related projects:

Repository Description Stars
opendatacube/datacube-explorer A web-based tool for exploring Open Data Cube collections using GIS capabilities and Flask. 56
opendatacube/odc-tools Develops tools and libraries for working with Open Datacube data in Python 62
xcube-dev/xcube A Python toolkit for managing geospatial data cubes using xarray, Zarr, and Dask. 203
opendatacube/datacube-ows Provides an open web service platform to serve data visualizations from Open Data Cube indexes. 71
appelmar/gdalcubes An R package for working with satellite imagery data as regular raster data cubes 122
datonic/datadex A platform for collaborative open data management and analysis 264
juliadatacubes/earthdatalab.jl A Julia interface to access and manipulate Earth System Data Cube data 33
esds-leipzig/cubo A Python package for creating On-Demand Earth System Data Cubes from remote sensing data. 170
nsidc/earthaccess A Python library providing easy access to NASA Earth science data 433
pydap/pydap A Python library for accessing and manipulating scientific data over the internet using the OPeNDAP protocol. 139
earthlab/earthlab.github.io A website providing tutorials and resources for data science and earth sciences with interactive development tools 99
opendatacube/odc-stac A Python library for loading STAC items into xarray Datasets 144
opendcs/opendcs A tool for retrieving and processing hydro/meteorologic data from various sources in real-time. 34
awesomedata/apd-core Provides core metadata and management for a collection of publicly available datasets 358
gdsbook/book An interactive introduction to geospatial data analysis using Python and Jupyter Notebook 339