pytorch-mobilenet-v3
MobileNetV3 model
An implementation of MobileNetV3 in PyTorch with pre-trained models
MobileNetV3 in pytorch and ImageNet pretrained models
783 stars
12 watching
188 forks
Language: Python
last commit: over 5 years ago
Linked from 1 awesome list
classificationimagenetmobilenetmobilenetv2mobilenetv3pytorch
Related projects:
Repository | Description | Stars |
---|---|---|
d-li14/mobilenetv3.pytorch | A PyTorch implementation of MobileNet V3 architecture | 523 |
xiaolai-sqlai/mobilenetv3 | A PyTorch implementation of the MobileNetV3 architecture with pre-trained models and training code for fine-tuning. | 1,662 |
leaderj1001/mobilenetv3-pytorch | An implementation of MobileNetV3 using PyTorch with search space optimization | 292 |
xxradon/igcv3-pytorch | Reimplements MobileNet-V2 and IGCV3 using PyTorch for efficient deep learning. | 19 |
randl/mobilenetv2-pytorch | An implementation of MobileNetV2 in PyTorch for image classification tasks. | 271 |
xiaochus/mobilenetv3 | A Keras implementation of MobileNetV3 architecture for image classification and segmentation. | 238 |
chenxi116/pnasnet.pytorch | PyTorch implementation of PNASNet-5 architecture | 317 |
mattmacy/vnet.pytorch | A PyTorch implementation of V-Net for volumetric medical image segmentation | 703 |
xiaochus/mobilenetv2 | A Keras implementation of MobileNetV2 with support for training and fine-tuning | 321 |
zsef123/efficientnets-pytorch | A PyTorch implementation of EfficientNet for computer vision tasks | 309 |
lextal/pspnet-pytorch | A PyTorch implementation of a segmentation network architecture | 588 |
kefirski/bytenet | A Pytorch implementation of a neural network model for machine translation | 47 |
randl/shufflenetv2-pytorch | An implementation of a lightweight convolutional neural network architecture for mobile devices | 191 |
dyhan0920/pyramidnet-pytorch | An implementation of a deep neural network architecture for image classification tasks | 273 |
kaiyangzhou/dassl.pytorch | A PyTorch toolbox for supporting research and development of domain adaptation, generalization, and semi-supervised learning methods in computer vision. | 1,236 |