awesome-random-forest

Forest toolkit

A curated collection of resources and tools for the Random Forest algorithm

Random Forest - a curated list of resources regarding random forest

GitHub

1k stars
117 watching
337 forks
last commit: about 1 year ago
Linked from 3 awesome lists


Awesome Random Forest / Codes / Matlab

http://vision.ucsd.edu/~pdollar/toolbox/doc/ [Piotr Dollar's toolbox] ( )
https://github.com/karpathy/Random-Forest-Matlab 183 almost 11 years ago [Andrej Karpathy's toolbox] ( )
http://www.cs.rtu.lv/jekabsons/regression.html [M5PrimeLab by Gints Jekabsons] ( )

Awesome Random Forest / Codes / R

http://cran.r-project.org/web/packages/randomForest/ [Breiman and Cutler's random forests] ( )
Hothorn et al.'s party package with cforest function

Awesome Random Forest / Codes / C/C++

http://research.microsoft.com/en-us/downloads/52d5b9c3-a638-42a1-94a5-d549e2251728/ [Sherwood library] ( )
http://www.montefiore.ulg.ac.be/~geurts/Software.html [Regression tree package by Pierre Geurts] ( )
https://github.com/imbs-hl/ranger 780 about 2 months ago [ranger: A Fast Implementation of Random Forests] ( )

Awesome Random Forest / Codes / Python

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble [Scikit-learn] ( )

Awesome Random Forest / Codes / JavaScript

https://github.com/karpathy/forestjs 300 over 12 years ago [Forestjs] ( )

Awesome Random Forest / Codes / Go (golang)

https://github.com/ryanbressler/CloudForest 740 almost 3 years ago [CloudForest] ( )

Awesome Random Forest / Theory / Lectures

http://research.microsoft.com/en-us/um/cambridge/projects/iccv2013tutorial/ [ICCV 2013 Tutorial : Decision Forests and Fields for Computer Vision] ( ) by Jamie Shotton and Sebastian Nowozin

Awesome Random Forest / Theory / Lectures / http://research.microsoft.com/en-us/um/cambridge/projects/iccv2013tutorial/

http://techtalks.tv/talks/randomized-decision-forests-and-their-applications-in-computer-vision-jamie/59432/ [Lecture 1] ( ) : Randomized Decision Forests and their Applications in Computer Vision I (Decision Forest, Classification Forest,
http://techtalks.tv/talks/decision-jungles-jamie-second-half-of-above/59434/ [Lecture 2] ( ) : Randomized Decision Forests and their Applications in Computer Vision II (Regression Forest, Decision Jungle)
http://techtalks.tv/talks/entropy-estimation-and-streaming-data-sebastian/59433/ [Lecture 3] ( ) : Entropy estimation and streaming data
http://techtalks.tv/talks/decision-and-regression-tree-fields-sebastian/59435/ [Lecture 4] ( ) : Decision and Regression Tree Fields

Awesome Random Forest / Theory / Lectures

http://www.cs.ubc.ca/~nando/540-2013/lectures.html [UBC Machine Learning] ( ) by Nando de Freitas

Awesome Random Forest / Theory / Lectures / http://www.cs.ubc.ca/~nando/540-2013/lectures.html

http://www.cs.ubc.ca/~nando/540-2013/lectures/l8.pdf [Lecture 8 slide] ( ) , [Lecture 8 video] ( ) : Decision trees
http://www.cs.ubc.ca/~nando/540-2013/lectures/l9.pdf [Lecture 9 slide] ( ) , [Lecture 9 video] ( ) : Random forests
https://www.youtube.com/watch?v=zFGPjRPwyFw&index=13&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6 [Lecture 10 video] ( ) : Random forest applications

Awesome Random Forest / Theory / Books / Antonio Criminisi, Jamie Shotton (2013)

http://link.springer.com/book/10.1007%2F978-1-4471-4929-3 [Decision Forests for Computer Vision and Medical Image Analysis] ( )

Awesome Random Forest / Theory / Books / Trevor Hastie, Robert Tibshirani, Jerome Friedman (2008)

http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf [The Elements of Statistical Learning, (Chapter 10, 15, and 16)] ( )

Awesome Random Forest / Theory / Books / Luc Devroye, Laszlo Gyorfi, Gabor Lugosi (1996)

A Probabilistic Theory of Pattern Recognition (Chapter 20, 21)

Awesome Random Forest / Theory / Papers

[Paper] Consistency of random forests
[Paper] On the asymptotics of random forests
http://jmlr.org/proceedings/papers/v32/denil14.pdf)] Random Forests In Theory and In Practice [[Paper] (
Paper Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers Abraham J. Wyner, Matthew Olson, Justin Bleich, David Mease [ ]
Paper Deep Neural Decision Forests [ ]
Paper Canonical Correlation Forests [ ]
http://arxiv.org/pdf/1507.07583.pdf)] Relating Cascaded Random Forests to Deep Convolutional Neural Networks [[Paper] (
http://jmlr.org/proceedings/papers/v37/matthew15.pdf)] Bayesian Forests [[Paper] (
[Paper] Mondrian Forests: Efficient Online Random Forests
Paper Extremely randomized trees P Geurts, D Ernst, L Wehenkel - Machine learning, 2006 [ ] [[Code] (
http://research.microsoft.com/pubs/205439/DecisionJunglesNIPS2013.pdf)] Decision Jungles [[Paper] (

Awesome Random Forest / Theory / Papers / http://research.microsoft.com/pubs/205439/DecisionJunglesNIPS2013.pdf)]

Paper Laptev, Dmitry, and Joachim M. Buhmann. Transformation-invariant convolutional jungles. CVPR 2015. [ ]

Awesome Random Forest / Theory / Papers

http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Liu_Semi-supervised_Node_Splitting_2013_CVPR_paper.pdf)] Semi-supervised Node Splitting for Random Forest Construction [[Paper] (
http://www.nowozin.net/sebastian/papers/nowozin2012infogain.pdf)] Improved Information Gain Estimates for Decision Tree Induction [[Paper] (
http://lrs.icg.tugraz.at/pubs/leistner_eccv_10.pdf)] MIForests: Multiple-Instance Learning with Randomized Trees [[Paper] ( [[Code] (
Paper Samuel Schulter, Paul Wohlhart, Christian Leistner, Amir Saffari, Peter M. Roth, Horst Bischof: Alternating Decision Forests. CVPR 2013
Paper Decision Forests, Convolutional Networks and the Models in-Between [ ]
Paper Random Uniform Forests Saïp Ciss [ ] [ ]
Paper Autoencoder Trees, Ozan İrsoy, Ethem Alpaydın 2015 [ ]

Awesome Random Forest / Thesis

[Repository] 525 over 8 years ago with thesis and related codes

Awesome Random Forest / Applications / Image classification

http://www.iai.uni-bonn.de/~gall/download/jgall_coarse2fine_cvpr15.pdf)] ETH Zurich [[Paper-CVPR15] ( [[Paper-CVPR14] ( [[Paper-ECCV] (
http://www.cs.huji.ac.il/~daphna/course/CoursePapers/bosch07a.pdf)] University of Girona & University of Oxford [[Paper] (

Awesome Random Forest / Applications / Object Detection

http://lrs.icg.tugraz.at/pubs/schulter_cvpr_14.pdf)] Graz University of Technology [[Paper-CVPR] ( [[Paper-ICCV] (
http://www.iai.uni-bonn.de/~gall/download/jgall_houghforest_cvpr09.pdf)] ETH Zurich + Microsoft Research Cambridge [[Paper] (

Awesome Random Forest / Applications / Object Tracking

http://campar.in.tum.de/pub/tanda2014cvpr/tanda2014cvpr.pdf)] Technische Universitat Munchen [[Paper] (
http://www.igp.ethz.ch/photogrammetry/publications/pdf_folder/LeaFenKuzRosSavCVPR14.pdf)] ETH Zurich + Leibniz University Hannover + Stanford University [[Paper] (
https://lrs.icg.tugraz.at/pubs/godec_iccv_11.pdf)] Graz University of Technology [[Paper] (

Awesome Random Forest / Applications / Edge Detection

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hallman_Oriented_Edge_Forests_2015_CVPR_paper.pdf)] University of California, Irvine [[Paper] ( [[Code] (
http://research-srv.microsoft.com/pubs/202540/DollarICCV13edges.pdf)] Microsoft Research [[Paper] ( [[Code] (
http://research.microsoft.com/en-us/um/people/larryz/cvpr13sketchtokens.pdf)] Massachusetts Inst. of Technology + Microsoft Research [[Paper] ( [[Code] (

Awesome Random Forest / Applications / Semantic Segmentation

http://www.dsi.unive.it/~srotabul/files/publications/CVPR2014a.pdf)] Fondazione Bruno Kessler, Microsoft Research Cambridge [[Paper] (
http://step.polymtl.ca/~rv101/MICCAI-Laplacian-Forest.pdf)] INRIA + Microsoft Research Cambridge [[Paper] (
http://research.microsoft.com/pubs/146430/criminisi_ipmi_2011c.pdf)] Microsoft Research Cambridge + GE Global Research Center + University of California + Rutgers Univeristy [[Paper] (
http://mi.eng.cam.ac.uk/~cipolla/publications/inproceedings/2008-CVPR-semantic-texton-forests.pdf)] University of Cambridge + Toshiba Corporate R&D Center [[Paper] (

Awesome Random Forest / Applications / Human / Hand Pose Estimation

http://research.microsoft.com/pubs/238453/pn362-sharp.pdf)][[Video-CHI] Microsoft Research Cambridge [[Paper-CHI] ( ( [[Paper-CVPR] (
http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Krupka_Discriminative_Ferns_Ensemble_2014_CVPR_paper.pdf)] Microsoft Research Haifa [[Paper] (
http://research.microsoft.com/en-us/people/yichenw/cvpr14_facealignment.pdf)] Microsoft Research Asia [[Paper] (
http://www.iis.ee.ic.ac.uk/icvl/doc/cvpr14_xiaowei.pdf)] Imperial College London [[Paper-CVPR-Face] ( [[Paper-CVPR-Hand] ( [[Paper-ICCV] (
https://lirias.kuleuven.be/bitstream/123456789/398648/2/3601_open+access.pdf)] ETH Zurich + Microsoft [[Paper] (

Awesome Random Forest / Applications / 3D localization

http://www.iis.ee.ic.ac.uk/icvl/doc/ECCV2014_aly.pdf)] Imperial College London [[Paper] (
http://abnerguzman.com/publications/gkgssfi_cvpr14.pdf)] Microsoft Research Cambridge + University of Illinois + Imperial College London [[Paper] (
http://research.microsoft.com/pubs/184826/relocforests.pdf)] Microsoft Research Cambridge [[Paper] (

Awesome Random Forest / Applications / Low-Level vision / Super-Resolution

Paper Technicolor R&I Hannover [ ]
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schulter_Fast_and_Accurate_2015_CVPR_paper.pdf)] Graz University of Technology [[Paper] (

Awesome Random Forest / Applications / Low-Level vision / Denoising

http://research.microsoft.com/pubs/217099/CVPR2014ForestFiltering.pdf)] Microsoft Research + iCub Facility - Istituto Italiano di Tecnologia [[Paper] (

Awesome Random Forest / Applications / Facial expression recognition

Paper Sorbonne Universites [ ]

Awesome Random Forest / Applications / Interpretability, regularization, compression pruning and feature selection

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ren_Global_Refinement_of_2015_CVPR_paper.pdf)] Global Refinement of Random Forest [[Paper] (
Paper L1-based compression of random forest models Arnaud Joly, Fran¸cois Schnitzler, Pierre Geurts and Louis Wehenkel ESANN 2012 [ ]
http://jmlr.org/proceedings/papers/v37/nan15.pdf)] Feature-Budgeted Random Forest [[Paper] ( [ ]

Awesome Random Forest / Applications / Interpretability, regularization, compression pruning and feature selection / http://jmlr.org/proceedings/papers/v37/nan15.pdf)]

Paper Pruning Random Forests for Prediction on a Budget Feng Nan, Joseph Wang, Venkatesh Saligrama NIPS 2016 [ ]

Awesome Random Forest / Applications / Interpretability, regularization, compression pruning and feature selection

Paper Meinshausen, Nicolai. "Node harvest." The Annals of Applied Statistics 4.4 (2010): 2049-2072. [ ] [ ] [ ]
Paper Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach S. Hara, K. Hayashi, [ ] [ ]
Paper Cui, Zhicheng, et al. "Optimal action extraction for random forests and boosted trees." ACM SIGKDD 2015. [ ]
Paper DART: Dropouts meet Multiple Additive Regression Trees K. V. Rashmi, Ran Gilad-Bachrach [ ]
Paper Begon, Jean-Michel, Arnaud Joly, and Pierre Geurts. Joint learning and pruning of decision forests. (2016). [ ]

Backlinks from these awesome lists:

0