Kruskal-Veldman
Tree theorem proof
A detailed proof of Wim Veldman's tree theorem adaptation in Coq
An adaptation of Wim Veldman's proof of the tree theorem to Coq
0 stars
2 watching
0 forks
Language: Coq
last commit: 3 months ago Related projects:
Repository | Description | Stars |
---|---|---|
dmxlarchey/kruskal-theorems | A library that provides formal proofs of tree theorems using inductive type theory. | 1 |
dmxlarchey/coq-kruskal | A comprehensive library of constructive Coq proofs for Kruskal's tree theorem and related concepts. | 0 |
dmxlarchey/kruskal-higman | Provides detailed proofs and tools for Higman's theorem on unary trees | 0 |
dmxlarchey/kruskal-trees | Formalizes rose trees in Coq with implementations of induction principles and manipulation tools | 1 |
dmxlarchey/friedman-tree | A Coq implementation of Harvey Friedman's tree(n) function and its properties related to homeomorphic embedding. | 0 |
dmxlarchey/kruskal-fan | A Coq implementation of the Fan theorem and König's lemma for proving properties about monotone relations on lists and finite fans. | 1 |
coq-community/fourcolor | A formal proof of a fundamental result in graph theory using the Coq proof assistant | 166 |
dmxlarchey/relevant-decidability | Mechanization of a proof for the decidability of Implicational Relevance Logic | 0 |
dmxlarchey/kruskal-almostfull | A Coq library that formalizes ground results about Almost Full relations in constructive mathematics | 1 |
barry-jay-personal/tree-calculus | Provides Coq proofs for a book on tree calculus-based programming | 51 |
dmxlarchey/kruskal-finite | Tools for proving properties about finite types and predicates using proof assistants | 0 |
math-comp/odd-order | Verifies a mathematical theorem in finite group theory | 25 |
coq-community/coq-100-theorems | Repository tracking famous theorems proved using proof assistants. | 55 |
dmxlarchey/quasi-morphisms | A Coq library providing tools and definitions for quasi-morphisms in the context of Almost Full relations | 1 |
math-comp/abel | Formalization of mathematical theorems about solvability and Galois theory for polynomials | 28 |